🌕🌗🌑🌑🌑
# 題目連結
- 題目連結
- Online Judge
- uDebug
# 題目說明
Time limit: 3.000 seconds
# 題目
A problem that is simple to solve in one dimension is often much more difficult to solve in more than one dimension. Consider satisfying a boolean expression in conjunctive normal form in which each conjunct consists of exactly 3 disjuncts. This problem (3-SAT) is NP-complete. The problem 2-SAT is solved quite efficiently, however. In contrast, some problems belong to the same complexity class regardless of the dimensionality of the problem.
Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the subrectangle with the largest sum is referred to as the maximal sub-rectangle.
A sub-rectangle is any contiguous sub-array of size 1 × 1 or greater located within the whole array. As an example, the maximal sub-rectangle of the array:
is in the lower-left-hand corner:
and has the sum of 15.
# Input
The input consists of an N × N
array of integers.
The input begins with a single positive integer N
on a line by itself indicating the size of the square two dimensional array. This is followed by N^2
integers separated by white-space (newlines and spaces). These N^2
integers make up the array in row-major order (i.e., all numbers on the first row, left-to-right, then all numbers on the second row, left-to-right, etc.). N
may be as large as 100
. The numbers in the array will be in the range [−127, 127]
.
# Output
The output is the sum of the maximal sub-rectangle.
# Sample Input
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
# Sample Output
15
# 解題技巧
- 利用兩次 dp (Dynamic Programming) 來完成紀錄最大的子矩陣數值總數
- 第一個 dp 是用來記錄矩陣從左上角的矩陣開始,並固定開始位置,一路計算子矩陣數值到右下角。
- 第二個 dp 是由
Time Complexity O(n^4)
完成的,利用前面計算的陣列,並以下圖的方式解決中間子陣列的數值計算。
- 註:為了計算方便,我們將陣列大小設為
N + 1
避免判斷i - 1
或j - 1
小於0
的可能性。
- 在計算第二個 dp 的時候每個數值來比大小,並記錄最大值,就為答案。
# Solution
import java.util.*; | |
public class Main{ | |
public static void main(String[] args){ | |
Scanner sc = new Scanner(System.in); | |
int N = sc.nextInt(); | |
int[][] arr = new int[N + 1][N + 1]; | |
int max = Integer.MIN_VALUE; | |
for(int i = 1; i < N + 1; i++){ | |
for(int j = 1; j < N + 1; j++){ | |
int input = sc.nextInt(); | |
arr[i][j] = arr[i - 1][j] + arr[i][j - 1] - arr[i - 1][j - 1] + input; | |
} | |
} | |
for(int i = 1; i < N + 1; i++){ | |
for(int j = 1; j < N + 1; j++){ | |
for(int x = i; x < N + 1; x++){ | |
for(int y = j; y < N + 1; y++){ | |
int curr = arr[x][y] - arr[i - 1][y] - arr[x][j - 1] + arr[i - 1][j - 1]; | |
max = Math.max(max, curr); | |
} | |
} | |
} | |
} | |
System.out.println(max); | |
sc.close(); | |
} | |
} |
單字
** **
!! !!
片語 & 搭配詞
!! !!